

Automating the Transportation

Design to Simulator Model Process

Vincent Horosewski,
BS
NADS
The University of Iowa

Shawn Allen, BFA, AA
Engineering Coordinator
NADS
The University of Iowa

Automating the Transportation Design to Simulator Model Process

Shawn Allen, BFA, AA
Project Mgr., Transportation Visualization
NADS
University of Iowa

Vincent Horosewski
Application Developer
NADS
University of Iowa

Zuoyuan Zhao
Undergraduate
Mathematics, Computer Science
University of Iowa

Adam Kueny
Post-graduate
Engineering
University of Iowa

A Report on Research Sponsored by SaferSim

July 2017

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and

the accuracy of the information presented herein. This document is disseminated under the

sponsorship of the U.S. Department of Transportation’s University Transportation Centers

Program, in the interest of information exchange. The U.S. Government assumes no liability for

the contents or use thereof.

1 Automating the Transportation Design to Simulator Model Process

Table of Contents

Table of Contents .. 1

List of Figures.. 3

List of Tables ... 4

Abstract ... 5

1 Project Overview ... 6

1.1 Converter support for 3rd party simulator formats ... 7

1.2 Collaboration Outreach .. 7

1.2.1 Collaboration Result ... 8

1.2.2 Collaboration Test Models .. 9

1.3 Converter software enhancement .. 9

2 Simulation Overview ... 10

3 Software Enhancements ... 12

3.1 Design model LandXML file format .. 13

3.2 Determination of roadway geometry .. 14

3.3 Intersections ... 15

3.3.1 Intersection corridor smoothing .. 16

3.4 Texture Mapping .. 18

3.4.1 Automated Texture Mapping .. 20

2 Test Cases .. 24

3 Workflow Overview ... 28

4 Converted Model Integration Tasks .. 29

4.1 Tile Model Library ... 30

4.2 Tile Model Integrator Tool .. 32

5 Converter Tool Use ... 33

6 Conclusions and Future Work ... 34

2 Automating the Transportation Design to Simulator Model Process

References .. 36

Appendix A: NADS LRI Specification .. 39

3 Automating the Transportation Design to Simulator Model Process

List of Figures

Figure 2.1 - The title is placed below for figures Error! Bookmark not defined.

Figure 3.1 - This is another example Error! Bookmark not defined.

4 Automating the Transportation Design to Simulator Model Process

List of Tables

Table 2.1 - The title goes above the table Error! Bookmark not defined.

5 Automating the Transportation Design to Simulator Model Process

Abstract

This development project was proposed to the USDOT in the SAFER-SIM proposal

under Theme Areas: 1. transportation safety affecting vehicular roadway users, and 2.

enhancing roadway design processes.

The purpose of this project was to refine software tools and algorithms that automate

the conversion of transportation design models into NADS miniSimTM driving simulation

environments.

Outreach to miniSim users was made in hopes of developing a consortium of

simulation laboratories interested in working with Departments of Transportation

research or design activities, including demonstrations of proposed designs. Several

sites have in the past expressed interest in building or converting tile model

environments from transportation design models. A small number of models were

submitted by one site, but the lack of necessary design model attributes and inability to

provide them required the creation of smaller design models than would have been

available through the consortium.

Converter improvements were made to the existing tool by integrating XML and

spline libraries and algorithm improvements. Several conversions were made from

transportation design models into driving simulator models. For purposes of this

development, driving simulator models are defined as the visual environment model and

associated logical meta-data necessary for driving the model using the NADS miniSim

driving simulator.

As part of the project, different simulator formats were investigated to identify 3rd

party simulator formats that might be suitable for the converter to support in addition to

NADS miniSim formats. Such an approach could benefit the broader driving simulator

and transportation research communities by expanding their capabilities to use design

models.

6 Automating the Transportation Design to Simulator Model Process

Developing a robust converter requires that different types of roadway design models

be used to exercise converter algorithms and work flow. The test cases vary in

complexity and scale and are detailed in section 3 and include simple single roadways,

hills, curved roads and intersections.

1 Project Overview

This section provides an overview of the project and subtasks undertaken during the

performance period.

In addition to software development, an effort was made to create a virtual

consortium of laboratories that we believed to have a relationship with local departments

of transportation or who had expressed interest in the capability of simulating roadway

design models.

A number of enhancements were implemented on the converter tool to improve

performance. Standard libraries were integrated to provide robust solutions to

smoothing algorithms and parsing/access to LandXML data.

The converter was exercised on a number of test cases with varying complexity,

including straight, curved, hill, intersections and a small city-like network of roadways.

NADS test files were created using AutoDesk Civil3DTM version 2018 and stored as

DWG and also exported to LandXML. The file format LandXML retains document

design elements that permit older versions of Civil3D to open later version design

documents while retaining the ability to interact with the model. This is an important

consideration since design models are tightly coupled to file formats, and the native

DWG format is not backward compatible. Industry standard design software (Bentley

Microstation and AutoDesk Civil3D) are able to import and export LandXML files.

Test cases submitted to NADS were reviewed using Civil3D. Design files missing

external references and invalid or missing references are problematic for processing.

7 Automating the Transportation Design to Simulator Model Process

Figure 1 Test file missing associated TIN file

1.1 Converter support for 3rd party simulator formats

As part of the project, an investigation was conducted to determine which simulator

formats might be appropriate to support by the converter tool. The two most widely used

research driving simulators were determined to be OpenDS and STITM.

OpenDS (Open Driving Simulator) is based on the JMonkeyTM game engine which

uses a proprietary, binary file format to store database information. Although converter

could support this format since the project is open source (and therefore access is

possible to source code), it was deemed to a poor choice due to the necessity of

decoding this file format causing delays to other more critical project efforts.

STI encodes both scenario and database information in a single text file.

Furthermore, the software imposes severe restrictions on the sort of changes that can

be made to the visual environment in contradiction to the way the NADS simulation

architecture permits run-time environment changes. This format was therefore also

deemed not a good candidate to include in the NADS converter.

1.2 Collaboration Outreach

Twenty organizations were contacted to participate in a virtual consortium by lending

their expertise and DOT design models as test cases for the converter tool. The

objective of the consortium was to provide a variety of test cases for processing, and to

create a pool of simulator models from these test cases that would be redistributed to

each site that submitted design models. Additional participation was possible for

8 Automating the Transportation Design to Simulator Model Process

laboratories that had no design model to submit, but wished to participate by nominating

design model candidates.

A website was created with information about goals and participation guidelines at:

http://safersim.nads-sc.uiowa.edu/converter/

Each model submitted for inclusion in the project was to be considered proprietary to

the submitting lab or agency with the understanding the resulting simulator models

would be shared among the consortium members.

The converter tools generate simulator-specific resources as well as visual model

files and textures which are broadly supported by most 3D applications. These model

files and textures can therefore be used on simulator architectures other than miniSim,

and would theoretically appeal to a broader research and design community. Therefore

the participation of laboratories that use simulators other than the NADS miniSim was

possible.

1.2.1 Collaboration Result

Only one site expressed interest in the project and submitted 2 model candidates.

Both models were from 3rd parties, not originating with the miniSim laboratories. Both

models did not contain required design elements necessary for the converter, and

despite several iterations we were ultimately unable to use these models for test cases.

A follow-up survey was sent to each candidate lab to identify reasons for non-

participation. Lacking more detailed information it seems reasonable to believe the

participation and re-distribution guidelines may have contributed to a decision to not

participate. However, feedback received to date indicates that the goals of this project

did not align with laboratory research, and one response indicates a perceived

incompatibility (the lab uses a different simulator than miniSim) – despite the consortium

website information specifically indicating the converter produces a generic visual model.

http://safersim.nads-sc.uiowa.edu/converter/

9 Automating the Transportation Design to Simulator Model Process

In retrospect each site should have been pursued individually and the points

expressed clearly how participation could benefit all contributors.

1.2.2 Collaboration Test Models

Two test models were submitted for processing. However, these test models did not

contain attributes necessary for conversion and updated design models could not be

made available for processing.

Figure 2 Test case 1 (left: site, right: zoom detail)

The test models were missing key attributes (i.e., breaklines) that had been used as

hints to extract proper road geometry from the data included in the design file.

1.3 Converter software enhancement

The converter tool has been enhanced from previous versions with the addition of

curve smoothing algorithms to generate smooth curve corridors within intersections.

Performance has been improved by integrating a library to process the roadXML input.

Additional enhancements include the generation of NADS miniSim metadata files used

10 Automating the Transportation Design to Simulator Model Process

in the production of simulator virtual worlds. In previous versions of the converter these

files were produced as stand-alone project files, thus precluding the possibility of using

the converted design file as part of the NADS Tile Model Library.

Also previous visual model output consisted of simply passing the geometric data

through with minimal processing. The resulting model output was a simple wireframe

representation of the model (as described in the TIN). This project processes the visual

model to generate texture-mapped geometric polygons (surfaces), relying on previously

developed texture mapping algorithms from the Safer Sim project Driving Simulator

Use in the Roadway Design and Planning Process, 2016.

2 Simulation Overview

This section describes in broad terms a high level overview of miniSim simulator

architecture as it pertains to the visual and logical representation necessary to support

current generation tools and workflow. This overview is helpful to understand which

elements the converted model fits into and provides some insight into how compatible

the processed converted models are with the standard model library and processes.

The miniSim simulator relies on attribute meta-data to describe and define physical

characteristics of roadways, junctions and objects that are presented in the simulation

world scene. There are two categories of data: the visual model, consisting of

everything visible within the scene, and the virtual model which describes key logical

elements of the scene within a correlated virtual environment model (CVED).

These attributes are developed in conjunction with or derive from the visual model to

minimize mismatches between the visual and correlated (logical) virtual models.

To facilitate development and production of simulator worlds, NADS relies on a

library of component modules that include visual models, model-specific meta-data and

11 Automating the Transportation Design to Simulator Model Process

a global library of meta-data and attributes referenced by all models within the library.

These models take the form of textured 3D geometry and associated meta-data which

are collectively referred to as tile models. Tile models must be developed following

conventions that define model size, roads, junctions and objects such as signs.

Currently these model attributes are manually generated on a per-model basis, often

by re-use of existing meta-data or partially automated through the use of Python and

shell command scripts.

Because design models are constructed outside the simulation domain, all potential

simulator attributes and datasets within them must be created using information from the

input model. At the minimum, these include:

a. Model information: size, objects, roads and intersections (if present), geometry.

b. Road description, including road ID, coordinate data describing the road surface

orientation along the length of roadway and connectivity to other roads.

c. Intersection description, including connectivity, surface description (intersection

elevation map).

d. Object description: currently objects are not supported by the converter even if

present in the design model. Objects are things which have been defined in the

scenario object library (vehicles, traffic signs, traffic signals, terrain, etc) and may

be re-used across the Tile Model Library. These objects are referenced by one

or more models and used in the scenario authoring process, an important part of

visualizing environment models (scenery) on the miniSim.

12 Automating the Transportation Design to Simulator Model Process

Figure 3 NADS Environment Model Simulator Overview

Lacking road or intersection element definitions in a model that contains the visual

representation of these elements would not permit driving on that model, nor allow

simulated vehicles to travel on it in the miniSim simulator.

3 Software Enhancements

The converter is designed around a series of processing stages organized into

various parsers. This resolves into a parser for each design model attribute from the

LandXML file. A number of changes were implemented by this project to improve overall

processing and add functionality for the converter. A key improvement involved

integrating a library to support XML processing. The original converter was developed

around the DOM implementation of the MSXML2 parser from Microsoft. The

requirements for a drop-in replacement were: XPath support, written in native C++,

speed, simplicity, UTF-8 character encoding, and standards compliance. A number of

replacements were considered: Xerces, Expat, XmlLite, tinyxml, RapidXml, and pugixml.

13 Automating the Transportation Design to Simulator Model Process

The pugixml library satisfied these requirements best and was available under the MIT

license. Making this change reduced processing time from twenty minutes to less than

one minute.

3.1 Design model LandXML file format

The design file structure is well documented by AutoDeskTM, but in general each

design model consists of embedded datasets and transformations to that data as

illustrated in Figure 4.

Figure 4 Autodesk Design Model schema (1)

Shown in Figure 4 are a road alignment (centerline), with a corridor model, parcel

map and the transformed data in final design form as the top level. The pipe network,

ground and survey data layers shown in this diagram are not used by the converter tool

at this time because the converter requires the transformed dataset directly pertaining to

the roadway and does not process survey inputs.

Each design model must contain attributes needed to support the NADS converter.

When these attributes are not found within the design model, the user is prompted to

14 Automating the Transportation Design to Simulator Model Process

provide them. If these attributes are not provided then further processing is not possible

and the converter exits.

A detailed description of the interaction with and converter tool processing of XML

data is included in the NADS document ID N12-001 Final Report: Visualization

Resources for Iowa State University & Iowa DOT (pp 16-20).

3.2 Determination of roadway geometry

Another performance logjam is the process of extracting road geometry from the rest

of the design file, which typically includes significant amount of data that has no direct

influence on producing a simulation world as shown in figure 5.

Figure 5 Example Design Model

Earlier versions of the converter tool relied on brute force to determine road

geometry: every triangle was compared to every centerline point to see if there was any

overlap. This was terribly inefficient, but time concerns kept us from changing

algorithms. The typical solution to this sort of problem is to provide some sense of spatial

processing, thereby reducing the candidate list, e.g., BSP or quad tree. We were able to

15 Automating the Transportation Design to Simulator Model Process

achieve significant improvement by including an early check on the distance from the

centroid of a given triangle to a given point on the centerline. When this distance was

greater than the width of the road, further processing was averted.

With the XML and centroid algorithm changes in place, all of our test cases are

processed in less than a minute for each model.

3.3 Intersections

Because of the way driving surfaces are represented in the NADS simulation

architecture, it is necessary to divide road networks into roads and intersections. Roads

refer specifically to a contiguous driving surface that does not vary in width. The

remaining drivable surfaces are considered intersections, and they serve to connect

roads together using an explicit source road: source lane >> destination road :

destination lane: data descriptions:

Corridor R2 0 R3 3 CrdrCurves 2ln_4ln_3way_comm_r2l0_r3l3.corr 12.000000

Initially, we sample each design model alignment at regular intervals of around 10

feet. Then, for each pair of sequential sample points, we construct an axis-aligned box

that contains these points but is both deeper and wider by a road width (split between

corresponding faces). The box also has some height in order to prevent mistakes that

might occur when dealing with overpasses. Then, we iterate through all boxes on all

pairs of alignments checking for overlap between any two boxes. Any overlapping

boxes are considered to be part of an intersection and are marked for further

consideration. Next, the boxes are clustered by finding sets with small intervening

distances. In particular, the distance between any two boxes must be less than the width

of a city block in any direction within the surface plane. The clusters indicate the extents

of each intersection.

Then, for each intersection, we find the maximum and minimum coordinates in order

to obtain a bounding box for the intersection as a whole. Working backwards everything

16 Automating the Transportation Design to Simulator Model Process

that is not an intersection must be a road. Given this construct, each road abuts one or

more intersections and each intersection abuts one or more roads. By noting how these

relate, the connectivity between roads and intersections can be determined.

3.3.1 Intersection corridor smoothing

Corridors are used to link source road lanes to destination road lanes. Defined

similar to roads, corridors consist of ordered point data, sorted from origin to destination.

Corridor normals are generally ignored; if the intersection contains an elevation map, the

surface geometry determines orientation at the corridor point. If the intersection is flat

then the normal data resolves to 0,0,1 or vertically oriented.

The converter previously did not support smooth corridors and instead relied on a

simple linear here-to-there approach:

Figure 6 Simple Linear Corridors at A, B and C

While technically valid, the corridors at intersections A, B and C will cause traffic to

abruptly change orientation as they travel through the intersection since the transition

from road to corridor is not smooth. Abrupt changes at slow speed may be

17 Automating the Transportation Design to Simulator Model Process

accommodated but at higher speeds traffic may fail when navigating the sharp turns at

the intersection boundaries.

The implementation of a spline library allows the converter to produce smoothed

corridors. Initially the resulting corridors overlapped adjacent roads. This topology

presents a problem for simulator traffic. The disjointed configuration would require

vehicles teleport from road to the corridor, which is not valid behavior. This arrangement

would cause simulator traffic to vanish as they attempt to calculate a trajectory through

the intersection.

Figure 7 Corridor vs. Road Overlap

The example 4-way intersection in Figure 26 illustrates some remaining tangency

and geometric position issues, yet the ADO vehicle can be authored to make a turn and

is able to navigate successfully through this region. Larger vehicles are also able to

navigate the corridor. However, the largest vehicle model in the NADS fleet, a semi-

truck with trailer, is not able to navigate this intersection. This is due to the small size of

the intersection and lack of a robust path mechanism for larger vehicles, which require

turning wide of the destination lane. These turn trajectories look more like a fishhook

than a simple turn as shown by the corridor path below.

18 Automating the Transportation Design to Simulator Model Process

Figure 8 Converted Design Model in ISAT

3.4 Texture Mapping

Texture mapping is the process of assigning imagery to geometry, and is typically a

manual operation to enhance the visual appearance of a model. Pixels in the texture

map have a unique U, V coordinate ‘address’ that are normalized in the range of 0 to 1.

Figure 9 Texture Map Coordinate Space

Texture application becomes more challenging when the appearance of smooth flow

is desired on complex surfaces. This is especially true of the region within intersections,

where geometric complexity can be considerably higher than roadways as each road

19 Automating the Transportation Design to Simulator Model Process

splits into multiple smaller ‘ribbons’; visual flow is important and generally requires user

direction as illustrated by the UV mapping shown below.

Figure 10 A: geometry, B: manually textured, C: UV mapping

The previous converter did not support texture. The texture algorithm implemented

shows some mapping anomalies which means some manual correction is needed to

address them in the short term. Texture UVs are skewed and clamped (smeared) as

shown in the figure 10 below. The algorithm also completely fails in some regions which

is apparent in the output model.

Figure 11 4-way Intersection Region Texture Issues

A potential solution to this issue of complex geometry and algorithm failure would be

to implement the intersection as a simplified region and introduce detail in the texture

map to emulate the visual effects shown in the manual example in figure 12. This could

be achieved nearly irrespective of region complexity through the use of planar projection

20 Automating the Transportation Design to Simulator Model Process

of an appropriately designed texture. Highly complex surfaces could contain distortions

that would likely not be apparent to the simulator driver.

Figure 12 Simplified Intersection Geometry

In the example above, a simple four-sided (quad) polygon has been mapped with a

texture designed for use with this particular model road texture and includes appropriate

detail indicating traffic wear.

3.4.1 Automated Texture Mapping

The process of automated texture mapping follows the road geometry extraction

method described previously that resulted in a pool of triangles. This pool is sorted to

reflect the order in which these triangles are located as they progress down the road.

The centerline consists of a sorted sequence of points. Segments are defined as the

interval between two adjacent points, beginning with the first centerline point and

proceeding to the last centerline point. Thus the centerline segment count is always

point count – 1.

21 Automating the Transportation Design to Simulator Model Process

Triangle sorting is accomplished by projecting each triangle centroid onto each

centerline segment, which is a reasonable approach since centerline points (and thus

segments) are correctly sorted already.

Figure 13 Unsorted and Sorted Triangle Order

If the projected point falls outside the bounds of a segment, we proceed to the next

segment. Several segments may pass this initial test. From this group, we compute the

distance between each segment endpoint and the triangle’s centroid. The index of the

endpoint of the segment closest to the centroid serves as the basis for the descriptor

which locates that triangle, as each endpoint has an index associated with it that is

sequentially correct.

Additionally, we add a fractional amount to the calculated centroid which indicates

where along the segment the centroid’s projection falls as a percentage of the total

segment length. The resulting number will not necessarily agree with any notion of

actual length, but it will increase monotonically as one travels down the road. Finally,

these numbers, along with their corresponding triangles, are sorted.

Now, with the correctly sorted list of triangles, we must choose a beginning point. To

do this, we consider the first two road triangles and identify the common edge and its

associated vertices. The one unrepresented vertex then must be “outer-most” and is

selected to be the point of origination for the road. This is typically mapped to the origin

22 Automating the Transportation Design to Simulator Model Process

in UV space, but may be the point (0, 1) if it is determined that it is on the left side of the

road. In our implementation the U axis lies along the road’s longitudinal axis and the V

axis extends laterally across the road.

Figure 14 Texture UV assignment

The triangle must be transformed in UV coordinate space such that it aligns with

adjacent triangles in order to avoid introducing texture anomalies (such as skewing or

stretching) that are evident when the texture is applied regardless of 3D orientation.

Before this can be done, however, any offset that accumulates as we move along the list

of triangles must be accommodated. This method ensures that the triangle rotates about

the triangle origin, as opposed to revolving around the model origin since that would

produce invalid results for consecutive (flowing) texture mapping.

23 Automating the Transportation Design to Simulator Model Process

Figure 15 Triangle Origin Rotation vs. Model Origin Rotation

In order to perform these transforms, the necessary Euler angles are computed with

basic trigonometry. Then a standard transformation is applied to each vertex to do the

rotation. This same process is repeated for the remaining triangle adjacent to the first

centerline segment. Since we know the triangles geometric length, we can scale the

triangle appropriately such that a unit in UV space corresponds to the width of the road.

Figure 16 Transformations to Assign UV Coordinates

Now, we can generate two new lines that are offset from the centerline by half a unit

that represent the left and right sides of the road. Using these as references, we can

24 Automating the Transportation Design to Simulator Model Process

determine whether a vertex falls on the left or right edge of the road. All rightward

vertices have a V texture coordinate of zero, and all leftward vertices have a V texture

coordinate of one. The U coordinates can be obtained by a rotation within the UV plane

that aligns the points with the V = 0 or V = 1 line.

This technique does not seem to work well for curvy roads or for roads that vary in

width as implemented. There is clearly room for improvement in this algorithm.

2 Test Cases

Three initial test cases consisted of simple roadway ribbons, containing road

geometry that was processed to determine the feasibility of extracting road centerline

data from an unordered mass of geometry. One file included terrain geometry as shown

in figure 10 which proved to be problematic and was later removed for development

purposes.

Figure 17 Hilly, Winding Road Test Case

A hilly, winding road was considered a good test case for the texture application

process because this type of geometry is significantly more complex than straight or

simple hills when calculating sequential UV mapping. A more extreme example was

also tested with elevation changes over 300 feet.

25 Automating the Transportation Design to Simulator Model Process

Figure 18 Mountain Road Test Case

In addition to these simple geometric test cases, additional files were created in

AutoDesk Civil3D as simple roadway design models to cover a broad range of design

types, ranging from simple straight roadway to a more complicated road network. These

test cases consist of the minimum design information needed to support the converter

and do not include real-world design model datasets such as a site plan or survey data.

The test models contain a majority of the design considerations which are used in the

miniSim simulated worlds, including super-elevation, rising curves, overpasses, a road

split commonly found in freeway on/off-ramps, intersections and acute angle

intersections. Test cases also included one lane roads, as is typical of some

interchange ramps.

o Straight Roadway (simplest, smallest test)

Figure 19 Straight Road Test Case

o Curve

26 Automating the Transportation Design to Simulator Model Process

o Hill (rising curve)

Figure 20 Combined Curve and Hill Test Case

o Boulevard

o Divided Highway

Figure 21 Divided Highway Test Case

o Roadway with barrier rail

o Simple Overpass

o 3-way intersection

Figure 22 3-way Intersection Test Case

o 4-way intersection

27 Automating the Transportation Design to Simulator Model Process

Figure 23 4-way Test Case

o Freeway on-ramp

Figure 24 On-ramp Test Case

28 Automating the Transportation Design to Simulator Model Process

o Roundabout

Figure 25 Roundabout Test Case

o ‘City’

Figure 26 ‘City’ Test Case

3 Workflow Overview

Workflow is the work and procedures needed to convert a design model and

visualize it on the NADS miniSim. This process currently involves running the Design

Converter to produce simulator model files, integrating those files into the Tile Model

Library, creating a scenario world that uses the converted file, then creating a scenario

to drive and installing the world on a miniSim.

29 Automating the Transportation Design to Simulator Model Process

Figure 27 Conversion Workflow

After the design model has been integrated into the Tile Model Library, standard

build procedures must be used to generate the visual and data files necessary to author

a scenario and visualize it on the NADS miniSim. This process generates multiple visual

files (geometry), texture and road network data in the form of a BLI file. The BLI file is

used as a map for the NADS Interactive Scenario Authoring Tool (ISAT) to create

scenarios (interactive visualizations) on the miniSim. Installing the generated files and

importing the scenario into miniSim allows the user to then drive their converted design

file.

4 Converted Model Integration Tasks

In order to use the converted design model with the NADS miniSim, a number of

integration and build tasks must be completed. The majority of these integration steps

are conducted using a graphical user interface to the Tile Model Library called the Tile

Model Integrator Tool (TMIT). Both library parameter and tile specific files must be

updated or generated. Build tasks are conducted using standard methods which are

described in miniSim training(2) and Tile Mosaic Tool Manual(33).

30 Automating the Transportation Design to Simulator Model Process

4.1 Tile Model Library

The Tile Model Library is a collection of files and folders known as the Tile Model

Library, or library. These files include parameter files for the collective model set and

geometry and data files for each individual tile model in the library. At this time, the

directory structure and system environment variables are also key elements of the

library. Therefore in order to use design model files on the miniSim, the converted

design model files must be integrated within this framework of folders and files.

Figure 28 Tile Model Library schema

The interface to the Tile Model Library is through a graphical 2D map editor called

the Tile Mosaic ToolTM (TMT). Users place tile models onto a map and then generate

visual and logical data for each configuration (world) needed. Files that have not been

integrated into the library are not visible to the TMT even if they reside within the library

folder structure.

Tile models are contained within model folders organized into category folders. Each

tile model name must be unique and includes various data and meta-data files that

define the model and roads, intersections and objects within the tile model.

Each tile model also requires specification for each road and intersection contained

in the tile model within meta-data records and data files. These records follow NADS

LRI conventions as documented in the NADS LRI Specification document. According to

convention, roads are ribbons defined with a centerline and surface orientation; this data

31 Automating the Transportation Design to Simulator Model Process

is stored in a file specific to each road. A single tile may contain one or more roads.

The example road definition below shows a 2 lane city road with a default speed limit of

55 miles per hour. This speed attribute is used by autonomous traffic during simulation.

RoadDef RoadName r1 RdwayCrv test_r1.path

LaneDef 12.000000 P

LaneDef 12.000000 N

DefRdAttr SpeedLimits 55.000000 0.000000

DefRdAttr CityRoad -1 0.000000

The above road definition example shows required keywords bolded and parametric

fields highlighted. The data for each road centerline is contained within the file specified

within this definition, test_r1.path.

In addition to basic road information, an optional lateral profile describes a cross

section for each road. Lateral profiles describe the shape of the cross section and

surface material across the road. These attributes support vehicle dynamics by

associating materials to a coefficient of friction value. Each change in the road surface

for a road requires a unique lateral profile as shown below:

DefLatCrvFile R1 LatProfileList.lat LatCrvName RES_LN2 For example, if this

particular roadway contained a material change (asphalt to concrete) then it would

require a lateral profile for each material used.

Lateral profile data is currently contained within the file LatProfileList.lat and

referenced by the ID in the last record field in the above example. This lateral profile file

is referenced by all tile models in the library.

Models containing multiple roads require the use of connectors or junctions called

intersections to join multiple road segments into a road network. Intersections may be

flat, elevated or sloped depending on the nature of the road surfaces at the junction

location. Flat or elevated intersections may be defined within a tile intersection

definition, but sloped, articulated or complex intersections must use an elevation map to

32 Automating the Transportation Design to Simulator Model Process

describe the surface. This data is contained within the Intersection.map library file and is

commonly unique to each model. As a result, this file has become too large to be

manually edited and requires map data to be added into intermediate files, which are

then concatenated into the parameter file used during the LRI generation process.

4.2 Tile Model Integrator Tool

The TMIT performs processing steps that would otherwise be tedious and error-

prone on library parameter files as well as tile model files. Written in Python, TMIT can

be extended by any knowledgeable Python programmer. TMIT manages the tile model

by copying it from a general location to a Tile Library folder, converts between file

geometry formats and prompts the user to enter required tile model parameters.

OpenFlightTM is required for the TMT and is a well-documented simulation file format

created, supported and maintained by PresagisTM. Since the converter generates

WavefrontTM OBJ files, an additional conversion (to OpenFLight) is needed. This

conversion is managed by the TMIT tool after selection of the model to process. The

actual conversion is performed by osgconv.exe, which generates a .FLT file. The use

of a 3rd party geometry converter provides leverage to use additional input file formats

without the responsibility of developing converters for individual file formats.

Another required tile model file is the preview icon which is used by TMT for each

model. The file format is an 8 bit AT&T .icn file which is generated by the 3D modeling

software PresagisTM CreatorTM. Since this tool is generally not available to miniSim

users and the file format is not well documented, a generic icon may be used in place of

the tile model icon. This approach means there may be no visual clue to the model

appearance within the TMT. A generic resource .icn file is included with the TMIT to

automatically generate this file.

33 Automating the Transportation Design to Simulator Model Process

5 Converter Tool Use

This version of the converter remains a command line tool where it is executed from

a DOS shell:

XMLConvert <LandXML input file> <output prefix> <Enter>

Several output files are generated into the same folder as the input file, assuming the

command is generated from the same location as the input:

Table 1 Converter output files

File name & type Description

{output prefix}.PET one per design, contains meta-data definitions, references to

library elements and connectivity information

{output prefix}.ISXN Intersection record data, one per intersection

{output prefix}.CORR one per corridor

{output prefix}.MAP elevation map, one per intersection

{output prefix}.ROAD one per road segment, per LRI specification

{output prefix}.LAT lateral profile, one for entire design

{output prefix}.OBJ visual model of road network from input design model

{output prefix}.MTL default material for the visual model

{output prefix}.TOP legacy file currently not used

These output files must be integrated into the miniSim workflow before the model is

available for use on the miniSim. TMIT provides a graphical user interface to integrate

these various files into the Tile Model Library. This tool is well documented in the

SaferSim report Driving Simulator Use in the Roadway Design and Planning

Process (pp. 34-53).

34 Automating the Transportation Design to Simulator Model Process

6 Conclusions and Future Work

Several problems remain when processing intersection corridors. The selection of

points used to construct the spline was a bit too cavalier, and, as such, the shape of

corridors does not match well to circular arcs. In particular, the paths do not have

enough curvature at the start which means there is too much at the end. Computer-

controlled simulator vehicles can negotiate these paths, but they expose a feedback loop

in the control logic that cause vehicles to lose control further down the road shortly after

navigating the corridor. Changing the vehicle dynamics sampling frequency can help (or

hurt), but this would require case-by-case analysis. Corridors overrun intersection in

some left turns. Furthermore, corridors and roads do not necessarily meet and rarely

meet at intersection boundaries as shown in Figure 22.

Figure 29 Corridor, road boundary overlap

A more rigorous solution will ensure the road direction vector is maintained into the

intersection and not overlap the road.

Due to software limitations, a number of changes must be made to the input design

file. For each road, there should be only one alignment, namely the centerline. Side-

35 Automating the Transportation Design to Simulator Model Process

profiles are required for all alignments. Pave1 and Pave2 layers, (or comparable layers)

which represent the road surface and shoulder, must be included for at least one cross

section per alignment in order to indicate the left and right road edges.

Processing model geometry present in the TIN records currently also exposes a

weakness of the converter. There may be only a single TIN surface within the input file,

and that should correspond to the finished road. Processing time can be influenced

significantly by the number of triangles within the TIN, so it may be desirable to cut large

designs into pieces.

Manual intervention may be needed during processing to select the correct

alignment or surface when more than one reasonable selection exists.

Additionally, roads with more than two lanes of traffic frequently end up with texture

mapping errors.

Complex designs as shown below, including traffic circles or roundabouts remain

uninterpretable by the converter.

Figure 30 Complex road network example

As mentioned previously, additional work is required to fully integrate the converted

model files into the miniSim workflow. Elevation maps are represented in a single Tile

36 Automating the Transportation Design to Simulator Model Process

Model Library resource file. Therefore, the converted model .MAP file must be integrated

into this resource. The same is true for lateral profiles.

Numbers occasionally need to be truncated in order to be parsed correctly due to the

imprecision of floating point coordinates with 12-16 or more decimal places.

Additionally, XMLConvert does not currently extract road attributes (e.g., default road

speed limit or bike path tags) from the design files. However, at least one attribute is

required to satisfy the miniSim world build process, so one must be added manually.

The geometric processor must be enhanced to support larger TIN files, including

non-road geometry. It would also be useful to create generic terrain in the output model

instead of omitting it entirely.

Lastly, the converted models maintain their original road design coordinates. In order

to be fully compatible with the NADS Tile Model Library, these coordinates should be

transformed such that the model origin (0,0,0 point) rests at the lower left-hand corner of

the tile per modelling conventions.

Glossary

Alignment: design model centerline

Assembly: design model cross section of a road

Centerline: the center of a road

Corridor: simulator model data structure and file to define road network connectivity

CVED: correlated virtual environment database; data description of visual model and

characteristics (speed limits, virtual actors, etc)

DOS: Disk Operating System; often used to describe the command line PC interface

where commands are typed in and executed

DWG: Autodesk design model file format

37 Automating the Transportation Design to Simulator Model Process

Elevation Map: elevation data structure defined as a column/row grid containing elevation

and material type

Intersection: simulator model junction that associates adjacent roads

ISAT: Interactive Scenario Authoring Tool; the graphic user interface and workspace to

create events or tune the simulated environment

ISXN: see intersection

LandXML: design model file format in text form, processed as the primary input to the

nads converter tool

Lateral Profile: Simulator model cross section of road that describes the elevation and

surface materials across the road; a TMT library asset

Layer: design model construction or management hierarchy element

Metadata: information that provides information about other data

[wikipedia;https://en.wikipedia.org/wiki/Metadata]

miniSim: the NADS portable driving simulator

MTL: Wavefront texture/materials file, associated with OBJ

Normal: geometry reference direction that is perpendicular to some reference point

OBJ: Wavefront geometry model file, associated with MTL file

PET: Polytag Extraction Tool file that contains road, intersection and object definitions

Road network: two or more simulator model roads

Road: simulator model includes visual geometry and data that describes center line and

surface attributes

Scenario: A series of actions designed to present the simulator driver with one or more

tasks, or to present situations where the driver responses are of interest

Segment: edge between two adjacent centerline points

SOL: Scenario Object Library, containing objects used in the creation of simulation

scenarios and used as features in tile models

38 Automating the Transportation Design to Simulator Model Process

Super-elevation: horizontal cross-slope of a road; used as design parameter to permit

vehicles to traverse curves at speeds greater than would be possible if the curve is flat

Terrain: simulator model visual representation of non-road, non-feature surfaces

Texture: bitmap file applied to geometry to create a visually compelling model

Tile: simulator model consisting of visual geometry, texture and data files to describe

roads, intersections and road connectivity, road type and speed limit attributes and

other scenario objects

TIN: triangular irregular network; a data structure for the representation of one or more

surfaces, usually terrain

TMT: Tile Mosaic Tool, a graphic user interface and workspace to arrange tile models to

construct simulator scenario worlds

UV: texture mapping domain that supports assigning texture to model geometry

Vector: one dimensional (directional) array; contained in road data files to describe the

road surface orientation at each centerline point

Workflow: a sequence of actions or processes that produce a desired resultReferences

1. Crews, Nathan (2007). Autodesk Civil 3D 2007 LandXML Support.doc

2. TMT training video at: http://www.screencast.com/t/KubOfsQzHGh6

3. Tile Mosaic Tool Manual, Sections: Creating Output, Output for Visual Database,

Output for Correlated (Logical) Database

39 Automating the Transportation Design to Simulator Model Process

Appendix A: NADS LRI Specification

The NADS LRI Specification document is available from NADS as a separate

document.

file:///C:/Users/sallen/AppData/Roaming/Microsoft/Word/NADS_LRI_Specification_311.pdf
file:///C:/Users/sallen/AppData/Roaming/Microsoft/Word/NADS_LRI_Specification_311.pdf

